
Multivariate Routes Through Traffic Anomalies

Erin Xu

December 1st, 2025

Introduction

The inevitability of traffic congestion in urban locations implies that studying its patterns
and underlying dynamics can enable daily commuters and transportation authorities to
transition from reactive management to proactive intervention, which may lead to over-
all reduced congestion, lower emissions and improved commuter safety around high-density
areas. However, accurately detecting and predicting traffic anomalies that cause signifi-
cant delays remains a challenge due to the inherent complexity of traffic dynamics, which
are continuous, stochastic, spatiotemporally autocorrelated and cross-correlated (Columbia
University Mailman School of Public Health, n.d.).
As existing prediction has evolved from interval-based pointwise in univariate time-series
data to a functional approach at the network-level utilizing neural networks (Ma et al.,
2024), this project offers a comparative assessment of common multivariate statistical tech-
niques that are highly interpretable as benchmarks for further study. The goal of this paper
is to identify and classify location-specific anomalies from the intraday patterns of traffic vol-
ume flow collected across 26 monitoring sites around the University of Toronto by comparing
principal component analysis (PCA), factor analysis (FA), and independent component anal-
ysis (ICA) methods, which are selected for their ability to achieve dimension reduction of
spatio-temporal data, interpret latent regimes to reveal original causes of anomalous traffic
volumes at each location, and isolate mixed data components.

Data Description

The dataset, synthetically modeled from Ma et al. (2024), has a natural tensor structure
consisting of 26 locations (𝑙), 384 (𝑛) days each, and 288 (𝑝) five-minute time points per day.
Then each slice 𝑋 ∈ ℝ𝕟×𝕡, called the daily traffic matrix, corresponds to one location and
forms a 384 × 288 matrix, with each entry as volume in vehicles.
No data cleaning was required, as all locations share uniform dimensions and contain no
missing observations. Exploratory visualizations were produced for two randomly selected
locations to conserve space. Spaghetti plots by location and by day, accompanied by sum-
mary statistics, highlight clear daily peak structures. The first location exhibits lower median
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flow than the second, suggesting an area with less traffic, perhaps a more residential area.
In contrast, the two randomly sampled days display similar median volumes, consistent with
typical weekday patterns. These preliminary observations motivate the subsequent use of
statistical methods to quantify temporal and spatial structure in the full dataset. A method
that would fully reveal the context of traffic volume with location should involve identifica-
tion of each location’s address.
The coefficient of variation (CV) and autocorrelation function (ACF) analyses indicate that
the traffic system exhibits a strong diurnal rhythm and persistent temporal dependence,
supporting the use of dimension-reduction methods. CV quantifies day-to-day variability at
each 5-minute interval. Averaged across locations, the CV curve shows highest variability
overnight, a sharp decline during the morning, and a pronounced minimum around midday,
followed by increasing variability toward the evening peak. The narrow CV shadow around
noon suggests highly consistent midday traffic, whereas the wider shadow during peak hours
reflects differing commuter patterns across locations.
Temporal autocorrelation was assessed at a representative site (Location 5), selected because
its mean CV is closest to the median across all locations. The ACF reveals strong short-term
persistence: autocorrelation decays gradually over several hours and remains positive even
at four-hour lags, implying that intraday traffic evolves smoothly. The absence of negative
correlations indicates a stable daily cycle.
The spatial correlation heatmap has shows that the center locations generally are correlated
with each other, which suggests functional subregions where locations follow similar demand
cycles. Most correlations fall in the moderate positive range, indicating coordinated but
heterogeneous behavior across the network. Therefore location-specific anomaly detection is
meaningful with location specific nuances, and network-wide patterns could also be coherent
enough as the system has shared temporal dynamics.
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Figure 1: Spaghetti Plot by Location
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Figure 2: Spaghetti Plot by Day
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Figure 4: Spatial Correlation: Daily Total Traffic Across 26 Locations

Methodology

The traffic dataset is high-dimensional, functional in nature (with 𝑝 = 288 time points per
day), and exhibits substantial temporal dependence.
Consequently, dimension reduction constitutes a fundamental component of the anomaly
detection framework with PCA serving as the primary dimension-reduction mechanism, as
each daily traffic profile is represented by a matrix 𝑋 ∈ ℝ𝑛×𝑝, and PCA assumes that
although each curve 𝑥𝑖 lies in a high-dimensional ambient space ℝ𝑝, its intrinsic variation is
concentrated on a low-dimensional manifold. This representation is consistent with standard
functional data analysis practice, where curves are expressed in a reduced basis and where
PCA provides a computationally efficient empirical basis for large-scale datasets.
For each location, the 384×288 traffic matrix 𝑋 was transposed so that rows corresponded to
days and columns to time points. PCA was then conducted on the centered traffic matrix,
𝑋𝑐 = 𝑋 − 1𝑛 ̄𝑥T, where ̄𝑥 denotes the sample mean profile. Let 𝑉 = [𝑣1, … , 𝑣𝑝] denote
the orthonormal loading functions (the empirical eigenbasis), and let 𝑆 = 𝑋𝑐𝑉 denote the
corresponding score matrix. The score of day 𝑖 on component 𝑗 is given by 𝑠𝑖𝑗 = 𝑋T

𝑐,𝑖𝑣𝑗.
The number of retained components 𝑘 was selected via the 90% variance-explained criterion:
∑𝑘

𝑗=1 𝜆𝑗
∑𝑝

𝑗=1 𝜆𝑗
≥ 0.90, where 𝜆𝑗 = 𝜎2

𝑗 denotes the variance explained by component 𝑗, which can be
obtained through the squared singular values of the sample covariance matrix. This process
highlights major regimes, like a morning peak, and discards higher-frequency noise.
Then anomalies were identified directly from the PCA score matrix 𝑆 ∈ ℝ𝑛×𝑘 as PCA
scores are generally computed via singular value decomposition (SVD) of each 𝑥𝑖 and are
uncorrelated and form an orthogonal basis. For each component 𝑗, a day 𝑖 was flagged as
anomalous if 𝑠𝑖𝑗 < 𝑄1,𝑗 − 1.5 IQR𝑗 or 𝑠𝑖𝑗 > 𝑄3,𝑗 + 1.5 IQR𝑗, where 𝑄1,𝑗, 𝑄3,𝑗, and IQR𝑗
denotes the first quartile, third quartile, and interquartile range of component 𝑗 respectively.
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In comparison to Mahalanobis-distance methods, this boxplot method is robust enough to
not assume normality and is standard in functional data outlier detection, which is important
as PC scores are not guaranteed to be multivariate normally distributed (MVN), although
surely uncorrelated. Boxplots give interpretable, location-specific anomaly sets that can be
classified by time-of-day (Shang & Hyndman, 2010).
FA provides an alternative dimension-reduction framework. Intuitively, FA attempts to ex-
plain the covariance structure of 𝑥𝑖 by assuming that the observed factors are linear combi-
nations of latent factors with an unique error term. In other words, when there is correlation
in 𝑥𝑖, it is due to the influence of common latent variables that can be uncovered. Math-
ematically, this means that an observed random vector 𝑥 satisfies 𝑥 = Λ𝑧 + 𝜀, where 𝑧 is
a lower-dimensional latent vector, Λ is a loading matrix (factor scores and loadings), and 𝜀
represents idiosyncratic noise. FA requires a full-rank, invertible sample covariance matrix;
estimation therefore proceeds via iterated PCA and not on the raw data, until uniqueness
variances converge. Both FA and PCA reduce the dimension of the data. In contrast, FA
may provide more interpretable loadings in comparison to PCA, as latent factors are viewed
as broad concepts or ideas that contribute to a pheonmenon, and these are highly valuable
in the social sciences - there is meaning all around.
FA anomalies were also detected using the same 1.5 × 𝐼𝑄𝑅 rule applied to the factor score
matrix 𝐹 , where 𝑓𝑖𝑗 < 𝑄1,𝑗 − 1.5 IQR𝑗 or 𝑓𝑖𝑗 > 𝑄3,𝑗 + 1.5 IQR𝑗. Because FA captures
deviations from latent structural factors rather than maximizing total variance, FA anomalies
could correspond to days whose patterns violate the inferred latent structure like shifted
peaks, whereas PCA anomalies reflect variance-aligned distortions like spikes associated with
incidents.
ICA was applied to the PCA scores to extract statistically independent latent signals em-
bedded within the traffic profiles. Intuitively, ICA identifies original components (inherent
cause) as linear combinations for each 𝑥𝑖, beyond a mathematically rigorous uncovering of
components (loadings) like in FA or PCA. While those loadings may certainly exist, they
may not be source signals. Therefore, ICA assumes whitened inputs with identity covari-
ance and therefore requires PCA preprocessing, like in FA (Hyvärinen & Oja, 2000). Then,
it mathematically follows that ICA yields the decomposition 𝑆PCA = 𝐴𝑆ICA, where 𝑆ICA
contains the source signals (scores) and 𝐴 is the mixing matrix (loadings). Unlike PCA
and FA, ICA uses information on statistical independence and non-gaussianity to recover
source signals, meaning that it doesn’t rely on the limited information in the covariance
data matrix. It is reasonable to assume data is non-gaussian, as while overall traffic sensors
take in a mixture of data coming from various components and by the central limit theorem,
any mixture of components will be more gaussian than the components themselves, but PC
scores (in this case, original components) themselves are not guaranteed to be multivariate
normally distributed (MVN), that is to say, non-gaussian. Then, ICA’s goal is to maximize
the non-gaussianity of PC scores (components) - this is the projection pursuit. ICA does not
struggle with the factor rotation problem that appears in FA.
ICA anomalies were detected via the same 1.5 × IQR rule applied to the independent source
scores. Intuitively, ICA anomalies represent rare independent micro-events that sharply
distort the traffic curve of a different location, for example a sudden dip/spike that only
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lasts a few intervals that PCA smooths out, or odd jumps that FA distributes across factors
and randomness. ICA is able to provide true causal analysis.
All anomalies identified across PCA, FA, and ICA were projected onto their two-dimensional
principal component subspace and partitioned using k-means clustering (Piech & Ng, 2013).
This method was selected for its computational efficiency and suitability for continuous
Euclidean feature spaces. The number of clusters was chosen by maximizing the average sil-
houette coefficient: 𝑘∗ = arg max𝑘 { 1

𝑁 ∑𝑁
𝑖=1

𝑏(𝑖)−𝑎(𝑖)
max{𝑎(𝑖),𝑏(𝑖)}}, where 𝑎(𝑖) is the average within-

cluster distance and 𝑏(𝑖) is the minimum average between-cluster distance (Rousseeuw,
1987). This procedure yields interpretable groups of anomalies that reflect distinct struc-
tural perturbations in daily traffic dynamics. Taken together, PCA, FA, and ICA form
a benchmark set: PCA captures global variance-driven deviations, FA captures structural
inconsistencies relative to latent factors, and ICA captures independent localized perturba-
tions that correspond to the original sources of anomalous traffic volume. Using all three
offers a comprehensive view of anomalous behavior from orthogonal interpretive perspec-
tives: variance, latent structure, and independence. This ensures that anomalies detected
are robust to modeling assumptions and interpretable in terms of their functional, temporal,
and structural characteristics.

Results

PCA retained between 2 and 9 components across all 26 locations, consistently explaining
at least 90% of total variance, with cumulative explained variance ranging from 0.9006 to
0.9404.
PCA detected between 4 and 31 anomalous days per location, with most locations falling in
the 15–25 anomaly range. This demonstrates that although each daily curve contains 288
five-minute observations, the dominant variation is always low-dimensional.
Across locations, the first two principal components (PCs) followed consistent functional
interpretations:

1. PC1 (global amplitude): Loadings were strictly non-negative and broadly elevated
across the 24-hour period, indicating that PC1 captures overall daily traffic volume,
such as comparing high-traffic days against quiet days.

2. PC2 (shape distortion or timing shift): PC2 loadings exhibited a morning–evening
contrast, with positive loadings during morning peaks and negative loadings in the
evening (or vice versa). This component reflects differences in peak timing, where
anomalously shifted or flattened peaks appear as extreme PC2 score values.

3. Higher order PCs (3-9): They would continue to capture localized deviations.

Intuitively, these anomalies correspond to days with unusually large or small PC scores
relative to the interquartile range for at least one retained component. Because PCA aligns
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Figure 5: PCA Loadings for 2 Locations with Anomalies
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with variance-maximizing directions, these anomalies could represent large-scale distortions
such as full-day surges, holiday traffic patterns, or major disruptions.
Factor Analysis successfully converged for 17 of 26 locations, always extracting 3 factors. FA
identified between 5-16 anomalous days at successful locations. From the output messages,
convergence failures usually occured when PCA dimensionality was too low (2-3).
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Figure 7: FA Loadings for 2 Locations with Anomalies

Across locations, the first FA loadings followed these interpretations:

1. FA1 (baseline daily volume)

2. FA2, FA3 (shape distortions): They are not variance-maximizing directions.

Intuitively, these anomalies represent days that deviate from the latent factor structure,
rather than simply from variance. While PCA anomalies capture overall surges or large-
scale changes, FA anomalies identify violations of latent behavioral patterns. That could be
peak shifting within latent factors, inconsistent “shape modes” of daily traffic, or breakdowns
of the usual relationships between morning and afternoon traffic. Because of the reduced
anomaly identification, FA is more conservative and structurally selective.
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FA score distributions appear more compact, with fewer extreme outliers. FA captures
deviations in latent covariance structure (e.g., changes in the relationship between morning
and evening peaks) rather than raw amplitude. The narrow score boxes suggest stable
relationships between their latent factors across days. When FA does produce outliers, they
appear as isolated points, indicating rare disruptions in factor relationships. This narrower
spread explains why FA produces moderate anomaly counts—it flags structural departures,
not amplitude-driven ones.
ICA converged successfully at all 26 locations, producing 2–3 independent components de-
pending on PCA dimensionality as expected after PCA whitening. ICA detected between 3
and 22 anomalies, typically between 8 and 15 anomalies per location.
Across all locations, the first sources followed these functional interpretations:

1. ICA Source 1 (localized spikes): The shape is a sharp positive or negative jump over
a very short interval (10–30 minutes). This could mean a sudden incident, brief surge,
or lane closure, or short-lived dip (sometimes negative spike). It is statistically inde-
pendent from the smooth daily curve.

2. ICA Source 2 (independent morning distruption): The is a strong swing isolated around
around 7–10 AM. This could be interpreted as morning congestion anomalies school-
day vs. holiday pattern, morning-only incident, or weather-related delays. These don’t
necessarily correlate with evening patterns as they are independent from other com-
ponents.

3. ICA Source 3 (independent evening disruption): A bump/dip concentrated around 4–7
PM can be interpreted as evening rush anomalies, evening event traffic, or some end-
of-day incident. ICA finds this separate from morning events because morning/evening
anomalies often do not co-occur.
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Figure 9: ICA Loadings for 2 Locations with Anomalies
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Intuitively, ICA highlights micro-structure anomalies that PCA smooths out and FA diffuses
across latent factors. ICA anomalies often overlapped with PCA and FA anomalies, but
identified unique, fine-grained disturbances, consistent with ICA’s sensitivity to localized,
high-frequency deviations. These could be: abrupt, short-lived spikes, dips at specific time
intervals, independent transient disruptions (perhaps weather or accidents). In observation,
university traffic is regular but shaped by overlapping processes, ICA is uniquely suited
to separate them into interpretable underlying signals. Concretely, ICA would reveal class
changeover cycles (large groups exiting lecture halls on the hour, groups commuting to
specific locations), residence-to-campus migration patterns in the morning, library closing
times, sports events. Then, anomalies could be irregular pedestrian surges on certain days
like the sports events, road closures, and students going to exams. These signals exist
simultaneously and overlap; PCA cannot fully separate them because PCA components
remain orthogonal but not independent. ICA isolates each hidden source and provides the
most rigorous identificiation of anomalies by pre-existing cause.
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Figure 10: Boxplot for 1 ICA Location with Anomalies

By definition, ICA components often have non-gaussian, heavy-tailed distributions, so the
boxplots for ICA components typically show skewness and occasional extremely high or low
points like in these last 2 sources. These ICA-specific outliers correspond to short, localized
perturbations rather than systematic shifts, explaining why ICA’s anomaly detections differ
the most from PCA and FA.
The breakdown of anomaly types across all 26 locations reveals a striking pattern: although
PCA, FA, and ICA are applied to the same daily traffic curves, the vast majority of anomalies
are not jointly detected by all three methods. PCA accounts for the largest portion of
anomalies overall, while FA and ICA detect fewer and more selective subsets. This result
is fully consistent with the methodological roles of each decomposition. PCA identifies
anomalies that manifest as large-scale deviations along the axes of highest variance—for
example, abnormally high daily volume, suppressed flow, or significant timing distortions in
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morning or evening peaks. Because daily traffic curves contain substantial natural variability,
PCA’s variance-maximizing nature makes it highly sensitive to any global shift that pulls a
day outside the main data manifold, producing relatively high anomaly counts.
In the context of the project’s central goal—identifying and characterizing atypical traffic
days at each location—this idiosyncrasy between methods is not a weakness but a strength.
The differences in anomaly detection highlight that PCA, FA, and ICA provide complemen-
tary anomaly signatures. PCA acts as a broad, variance-aligned detector of major disrup-
tions; FA isolates shape-based irregularities that contradict dominant commuting regimes;
and ICA uncovers independent micro-events that reveal fine-grained operational issues. To-
gether, the lack of complete overlap validates the design of the analysis: anomalies in traffic
are multi-layered, and understanding them requires a decomposition-based multivariate lens
rather than reliance on any single method. If the locations were labeled, there would be
further opportunity to reverse engineer anomaly causes based on the contexts of university
life and the goals of each multivariate method.
The temporal anomaly sequence plots reveal that anomalies are not uniformly distributed
across the 384-day period; instead, they occur in method-specific bursts that reflect dis-
tinct types of underlying disruptions. Locations 7 and 23 exhibit concentrated clusters of
anomalies around specific day ranges, suggesting periods of sustained irregularity in traffic
flow that could correspond to broader system-level disruptions (like construction phases,
seasonal events, road closure due to parade). In contrast, other locations show sporadic
anomalies, indicating that disruptions at these sites are more idiosyncratic and likely reflect
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local micro-events rather than persistent structural changes. Since the dataset is supposed
to mimic the traffic congestion at the University of Toronto, something could be said about
large groups of students leaving lectures every hour and automatic walk signs. This rein-
forces the need for a multi-method detection framework, as relying on any single method
would obscure the nuanced ways in which traffic deviates over the year.
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Figure 12: Timeline of Select Anomalies

The PCA-space visualization of clustered anomalies reveals several meaningful and distinct
groups, even though the clustering was performed across all locations and based on only
the common first 2 PCs. The silhouette analysis selected 𝐾 = 5, indicating that anomalies
naturally separate into five coherent behavioral modes rather than forming a cloud. The olive
cluster is dense and tightly packed at the center, going by PC1 and PC2 definitions, could
mean that these anomalies may be caused by light fluctuations in overall traffic volume
rather than structural changes in the daily curve. The remaining clusters were spatially
distinct, reflecting more extreme pattern deviations such as shifted peak times, abnormal
rush-hour intensities, or overall curve distortions. The presence of similar anomaly types
across many locations suggests that some unusual days reflect network-level disruptions,
while the smaller clusters indicate rarer, high-severity events. The clear separation between
clusters demonstrates that PCA scores effectively encode the structural variability of traffic
profiles, enabling interpretable anomaly grouping.

Discussion

A comparative framework utilizing Principal Component Analysis (PCA), Factor Analysis
(FA), and Independent Component Analysis (ICA), which provides a multi-faceted approach
to traffic anomaly detection, moving beyond single-method reliance, was successfully em-
ployed. The criteria for feature retention (90% variance for PCA/FA) and outlier detection,
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demonstrated that the three methods provide complementary and largely non-overlapping
views of the traffic profile, validating the need for a multi-method benchmark. Findings
confirm that while PCA serves as a robust dimension reduction strategy, it has fundamental
limitations as a standalone detector due to the uninterpretability of its components. Then,
with FA and ICA justifying the interpretability of each location’s components, the anoma-
lies are explained in a manner that moves beyond simple statistical independence to uncover
cause-effect relationships.
There are several avenues for future research. Firstly, all three decomposition methods are
fundamentally linear transformations. Although there is beauty in simplicity and it is in-
nocuous to assume that nature always takes the path of least resistance, this assumption may
inadequately capture highly non-linear relationships inherent in complex traffic dynamics,
such as chaotic system behavior or congestion cascade effects, in which an urban planner
should rightfully err on the side of overly pedantic (choose to value false positives) to miti-
gate risk. Non-linear dimensionality reduction techniques, such as Kernel PCA or manifold
learning methods, could potentially reveal subtle, non-linear structural patterns missed by
the current approach.
The current reliance on statistical heuristics (like residual thresholds or covariances for
PCA/FA) lacks direct calibration against ground-truth external events (confirmed accidents,
more features), limiting the assessment of method sensitivity and specificity. While ICA cer-
tainly addresses the issue of not having enough information in covariances, providing more
factors to ICA would also improve prediction as there have been recent advances in analyzing
the reliability of components through statistical testing. Next steps relate to collecting more
features of traffic like noting the number of lanes in traffic, speed limits, pedestrian crossings.
In addition to upgrading ICA, collecting more features would enable a supervised machine
learning validation framework with high performance comparison methods like ensemble
learning, which is better suited for big-data problems than ICA is. This would optimize and

14



expand the geographical capability of traffic-volume anomaly detection. A brief example
would be that these would provide helpful insights to commuters planning for a long road
trip, which may span various geographical regions in one instance.
The final limitation is that inherently independent per-location analysis is not the detection
of system-wide anomalies or coordinated disruptions across multiple sensors. The goal of
network-level is to define normalcy, and anomalies relative to the entire system. Then,
issues that are invisible or misinterpreted when analyzing individual sensors in isolation can
be addressed, as network-level anomaly detection shifts the focus from local fluctuations to
the health and behavior of the entire system. Advanced methods like Tensor Decomposition
could model the shared temporal and spatial factors simultaneously. By incorporating the
network’s topological structure, future models can achieve a more precise decoupling of
systemic factors from local fluctuations, providing the context, coherence, and causal insight
needed for resilient and proactive traffic management across the entire urban network.
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